COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master degree
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title	3D Plant Design in the Chemical Industry				
2.2. Course coordinator	Professor PhD. Eng. Cursaru Diana-Luciana				
2.3. Laboratory / seminar coordinator	Professor PhD. Eng. Cursaru Diana-Luciana				
2.4. Project coordinator	Assist. PhD. Eng. Matei Dănuța				
2.5. Year of study					
2.6. Semester *	3				
2.7. Evaluation type	Exam				
2.8. Course type - formative category	* DA 2.8. Type of subject matter *** C				

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

3.1. Number of hours per week	7	of which: 3.2. course	3	3.3. Seminars/laboratories	2	3.4 Project	2
3.5Total hours from curriculum	70	of which: 3.6. course	30	3.7Seminars/laboratories	20	3.8 Project	20
3.9Time distribution							
Study of textbook, course suppo	ort, bi	bliography and notes					10
Further reading in the library, or	n onli	ne platforms and fieldv	vork				-
Preparing seminars/laboratories, homework, portfolios and essays							5
Tutoring							-
Examinations						5	
Other activities							
3.10. Total hours of individual s	tudy	20					
3.11. Total hours per semester		90					
3.12. Number of credits		5					

4. Prerequisites (where applicable)

4.1. of curriculum	 Knowledge of mathematic Knowledge of chemical engineering Knowledge of mechanical engineering 				
4.2. of skills	Knowledge of the concepts of the plant design in the chemical industry				

5. Requirements (where applicable)

5.1. of course	Room equipped with video projector					
5.2. of seminars/laboratory	٨	> Room equipped with video projector and computers with specific				
		softwares for 3D design)				

6. Specific competences

Professional competences	 PC1. Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining. PC2. Characterization of physical and chemical structural properties, of petroleum products by complex analytic methods. PC3. Equipment, process and plant design. PC4. Real time control of processes and plants in chemical industry. PC5. Modeling, simulation and design of chemical processes.
Cross-curricular competences	 TC1. Documentation, information and scientific literature research. TC2. Independent and autonoms achievement of individual professional tasks. TC3. Advanced knowledge of computer, internet and specific chemical engineering software. TC4. Management organization and planning of professional teams and organizations.

7. Course objectives (based on the competence grid)

71 Concrel chiestive	At the and of the source the student will have been knowledge on the 2D						
7.1. General objective	At the end of the course the student will have basic knowledge on the 3D						
	design of the equipment specific to the chemical industry and the chemical						
	industry facilities. Throughout the course, knowledge transfer will be made						
	on the use of the PDMS_AVEVA simulator in the design of chemical						
	industry equipment.						
7.2. Specific objectives							
	After completing the discipline students will be able to:						
	Understand and identify correctly the concepts used in the design;						
	Know and interpret the structure of the model of a design problem;						
	Choose and develop a 3D design method.						
	Have the ability to evaluate, explain and interpret the processes that are						
	the subject of design;Have the ability to analyze and interpret the optimal						
	solutions of a design problem. Have the ability to formulate opinions and to						
	persevere for the purpose of professional self-improvement.						

8. Contents

8.1. Course	Time	Teaching methods	Comments
1. Design methodology (investment stages	5	Interactive, based on multimedia	Recommended
and related design documentation)		and student-centered techniques	course and
2. Basis of design (types of technological	5		recommended
schemes)			bibliography
3. Project design (criteria and ways of	5		
designing technological schemes: operating			
regime, operating flexibility, energy saving,			
technological multifunction, capacity			
enhancement and process development and			

technological process integration -			
environmental protection)			
4. Equipment and piping assembly (machine	5		
installation principles, piping installation			
systems, mounting plans, thermal and			
thermal insulation of pipelines and			
equipment).			
5. 3D design of a plant. Coupling of projected	5		
equipment			
6. Making the isometric scheme of a	5		
projected plant			
Bibliography	L		
 Silla, H., Chemical Process Engineering. D Towler, G., Sinnott, R., Chemical Engineer Baasel, W., Preliminary Chemical Engineer Coulson, J.M., Richardson., J.F., Chemical AVEVA Plant Hands On Overview AVEVA Plant Drawing Production 	ring Design, Ed. ering Plant Desig	Elsevier, New York, 2007 Jn, Elsevier, New York, 2008	003
8.2. Seminar / laboratory	Time	Teaching methods	Comments
1. Designing equipment with primitives in the	4	Interactive, based on multimedia	
AVEVA_PDMS library		and and design software such as	
2. Design of a steel structure made of	4	AVEVA_PDMS.	
columns and stiffening beams. Filling with			
curved beams			
3. Designing a tubing support	4		
4. Designing a platform	4		
5. Designing an Access Stair	4		
Bibliography			
AVEVA Plant Pipework modelling			
8.3. Project	Time	Teaching methods	Comments
3 D design of a plant from chemistry and	20	Interactive, based on multimedia	
petrochemistry industry.		and and design software such as	
		AVEVA_PDMS. The master	A real schema
		students will work in a team of 3-	is being used
		4 people, each member of the	from a refinery
		team being responsible for	
		designing an area.	
Bibliography			
1. AVEVA Plant Pipework modelling			
2. AVEVA Plant Drawing Production			

3. AVEVA Plant Structural Modelling

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploiești and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade					
	Formation of the necessary rationale base for modeling	Final exam containing a written and practical test for assessing	40%					
	activity of chemical	the knowledge on modeling of a						
10.4. Course	engineering structures	chemical industry specific structure.						
	Frequency to the course	Presence at the course, participation in debates, stimulation of critical thinking	5 %					
	Application of the	Presentation of the models made	15 %					
10.5. Seminar / laboratory	fundamental knowledge of the discipline in the design activity and the realization	during the laboratory hours.						
	of the models following the schemes of the installations							
10.6. Project	Presentation of the 3D scheme of a plant in the chemical and petrochemical industry.	The presentation of the project will be done by the entire team that worked through a question- and-answer presentation based on the 3D scheme.	40 %					
10.7. Minimum performance standard								
 Participation to all laboratories. 								
Realization of the model of a structure specific to the chemical industry								
Presentation of the project representing the 3D scheme of a plant specific to the chemical and petrochemical industry								
All exam subjects should be evaluated with a minimum of 5 from 10.								