COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum – Gas University of Ploiești
1.2. Faculty	Petroleum Technology and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title	Chemical plant design and economics					
2.2. Course coordinator Prof. Dra			f. Dragoş Ciuparu			
2.3. Laboratory / seminar coordina	2.3. Laboratory / seminar coordinator Prof. Dragos Ciuparu					
2.4. Project coordinator	2.4. Project coordinator Prof. Dragos Ciuparu					
2.5. Year of study			2			
2.6. Semester * 3						
2.7. Evaluation type			Exa	m		
2.8. Course type - formative category ** DA				2.9. Type of subject matter ***		С

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

5

3.1. Number of hours per week	7	of which: 3.2. course	3	3.3. Seminars/laboratories	2	3.4. Proje	ct 2
3.5. Total hours from curriculum	70	of which: 3.6. course	30	3.7Seminars/laboratories	20	3.8 Project	t 20
3.9Time distribution							hours
Study of textbook, course sup	port,	bibliography and not	tes				8
Further reading in the library, o	on or	nline platforms and fi	eldw	ork			6
Preparing seminars / laboratories, homework, portfolios and essays			4				
Tutoring							
Examinations					2		
Other activities							
3.10 Total hours of individual s	study	20					
3 11 Total hours per semeste	r	90					

3.12. Number of credits

4. Prerequisites (where applicable)

1.1 of ourrigulum	Chemical reactors
	Transfer phenomena
4.2 of skills	 General chemical engineering skills;
4.2. UI SNIIS	 General computer software skills;

5. Requirements (where applicable)

		•
5.1. of course	\triangleright	Room with projector
5.2. of seminars/laboratory	\triangleright	Room with computers connected to the internet;
	\triangleright	Software licenses for process modelling and simulation: Pro II,
		Aspen Engineering, Unisim Design, etc.

6. Specific competences

	ŝ	\triangleright	Description, analysis and advanced utilization of engineering concepts and fundamental
ona	nce		theories in petroleum refining;
ssi	etel	\triangleright	Equipment, process and plant design;
Je	npe	\triangleright	Real time control of processes and plants in chemical industry.
Pro	con	\triangleright	Modeling, simulation and design of chemical processes.
IL		\succ	Documentation, information and scientific literature research;
ula	es	\triangleright	Independent and autonomous achievement of individual professional tasks;
rric	Suc	\triangleright	Advanced knowledge of computer, internet and specific chemical engineering software;
cul	bete	\triangleright	Management organization and planning of professional teams and organizations.
SS-	<u>m</u>		
20	ပ္ပ		

7. Course objectives (based on the competence grid)

7.1. General objective	Apply general chemical engineering knowledge to design petroleum refining processes and plants using process modelling and simulation software
7.2. Specific objectives	 Learn how to assess the economics of process and plant design; Learn how to develop and review process flow diagrams; Learn how to use process modelling and simulation software for plant design; Learn how to estimate capital expenditure and operational expenditure for a plant.

8. Contents

8.1. Course	Time	Teaching methods	Comments
1. Introduction	1	Multimedia techniques	
2. Process conception and design	8	Multimedia techniques	
3. Use of simulation software for process and	8	Multimedia techniques	
plant design			
4. Process economics and cost assessment	6	Multimedia techniques	
5. Risk assessment, process safety and	4	Multimedia techniques	
environmental impact analysis			
6. Optimizing process design	3	Multimedia techniques	
Bibliography			
a) Books			

Gavin Towler, Ray Sinnott, Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design, Second Edition, Elsevier, 2013

Peters, M.S., Timmerhaus, K.D., Plant Design and Economics for Chemical Engineers, McGraw-Hill, Inc. New York 1991.

b) Periodicals

Chemical Engineering

Petroleum Technology Quarterly Magazine Suite

8.2. Seminar / laboratory	Time	Teaching methods	Comments		
1. Project statement of work and project	4	Hands-on, interactive			
simulation definition;					
2. Initial estimations, model convergence and	4	Hands-on, interactive			
recycle simulation;					
3. Economic assessment and cost estimation;	4	Hands-on, interactive			
4. Case study and process optimization;	4	Hands-on, interactive			
5. Process profitability and sensitivity analysis.	4	Hands-on, interactive			
Bibliography					
Proll Input manual, class notes and Course supp	oort books				
8.3. Project	Time	Teaching methods	Comments		
1. Defining project statement of work and	4	Hands-on, interactive			
assessment of profitability potential;					
2. Development of the process flow diagram;	4	Hands-on, interactive			
3. Process simulation and optimal design;	4	Hands-on, interactive			
4. Economic assessment and cost estimation;	4	Hands-on, interactive			
5. Profitability and sensitivity analysis	4	Hands-on, interactive			
Bibliography					
Pro II Input manual, class notes and Course support books.					

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1 Evaluation criteria	10.2 Evaluation mothods	10.3. Percentage
Activity			of final grade
	The design approach	Practical	25%
	technique		
	Accuracy and precision of	Practical	25%
10.4. Course	technical and economic		
	calculations		
	Correctness of design	Practical	10%
	decisions		
	Complying with ethical	Practical	5%

	principles				
	Quality of presentation of	Practical	5%		
	design results				
10.5. Seminar /	Degree of completion of	Practical	5%		
laboratory	lab assignments				
10.6. Project	Completion of design project	Practical	25%		
10.7. Minimum performance standard					
Students complete their project work with satisfactory results;					
Students are canable to elaborate an original design project, employing process simulation software					

Students are capable to elaborate an original design project, employing process simulation software, and performing an order of magnitude estimate of project costs and profitability analysis.