COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum - Gas University of Ploiesti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title Petrochemicals and fine chemicals synthesis				
2.2. Course coordinator Lecturer Ph.D. Eng. Movileanu Daniela Luminița				
2.3. Laboratory / seminar coordinator	2.3. Laboratory / seminar coordinator Lecturer Ph.D. Eng. Filotti Liviu			
2.4. Project coordinator		-		
2.5. Year of study				
2.6. Semester *		2		
2.7. Evaluation type		E		
2.8. Course type - formative category	/** DF	2.8. Type of subject matter ***	С	

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

108

3.1. Number of hours per week	5	of which: 3.2. course	ə 3	3.3. Seminars/laboratories	2	3.4 Project	-
3.5 Total hours from curriculum	70	of which: 3.6. course	e 42	3.7 Seminars/laboratories	28	3.8 Project	-
3.9 Time distribution							hours
Study of textbook, course suppo	ort, bi	ibliography and not	es				15
Further reading in the library, on online platforms and fieldwork						8	
Preparing seminars/laboratories, homework, portfolios and essays						13	
Tutoring						0	
Examinations						2	
Other activities					0		
3.10. Total hours of individual study 38							
3.11. Total hours per semester 70							

3. Prerequisites (where applicable)

4.1. of curriculum	A	graduated bachelor
4.2. of skills	٨	knowledge of organic chemistry, catalysis, mathematics, chemical reactors, use of computer
4.2. 01 Skins		technologies for data acquisition and processing and for documentation

4. Requirements (where applicable)

3.12. Number of credits

5.1. of course	\blacktriangleright	Course room with video projector
5.2. of seminars/laboratory	٨	Laboratory with micropilot plants

5. Specific competences

Professional competences	 PC1. Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining. PC2. Characterization of physical and chemical structural properties of petroleum products by complex analytic methods PC3. Equipment, process and plant design. PC4. Real time control of processes and plants in chemical industry. PC5. Modeling, simulation and design of chemical processes.
Cross curricular competences	TC1.Documentation, information and scientific literature research TC2. Independent and autonoms achievement of individual professional tasks. TC3. Advanced knowledge of computer, internet and specific chemical engineering software TC4. Management organization and planning of professional teams and organizations.

6. Course objectives (based on the competence grid)

> knowledge of processes for the production of the most important
petrochemicals and fine chemicals and the impact of raw materials nature on
the industrial technologies
 knowledge of the most important concepts of fine chemicals
 knowledge of main development tendencies in the petrochemistry and fine
chemicals synthesis industry
knowledge of the main raw materials for petrochemistry and fine chemicals synthesis
➢ knowledge, analysis and systematization of the basic principles in the field
and of the technologies for industrial production of petrochemicals and fine
chemicals
knowledge of intermediates for the production of pigments, drugs, perfumes,
cosmetics products, agrochemicals
solving specific problems using gained knowledge
> acquiring new knowledge in the field, using modern information technologies
> understanding the current level of the petrochemicals industry and fine
chemicals synthesis processes
> optimizing the conditions and methods of synthesis taking into account the
profitability and environmental aspects of the processes
> development of new methods and technologies for the synthesis of
petrochemicals and fine chemicals, considering the structural features and
the properties of these compounds and the efficiency estimation of the
developed methods and technologies
 rational choice of the best way to increase the efficiency of existing or new
technologies

7. Contents

			-		
8.1. Course	Time	Teaching methods	Comments		
Trends in petrochemistry. "Greening" the petrochemistry. History of	2				
development and complexity of fine chemicals industry		-			
Raw materials for petrochemistry and fine chemicals industry	4				
Technologies for production and use of synthesis gas	4				
Use CO ₂ in synthesis of petrochemicals	2				
Manufacturing of carbon based materials	2				
Unit processes in petrochemistry	9				
Polymers and biopolymers	5	Lecture, questioning			
Main reactions and methods for fine chemicals synthesis	3	and debate			
Technologies for production of fine chemicals in pharmaceutical,	4				
cosmetics and food industries					
Technologies for manufacture of main agrochemicals	2				
Dyes and pigments. Manufacturing technologies	2				
Green chemistry in the production of fine chemicals,	2	-			
pharmaceuticals and cosmetics	_				
Progress in fine chemicals and speciality chemicals from biomass	1				
Bibliography					
1. Ullmann's Encyclopedia of Industrial Chemistry, 40 Volume Set, 7th	Edition.	Wiley-VCH, 2011			
2. Kirk-Othmer Encyclopedia of Chemical Technology Fourth Edition,					
3. 3. Lebedev, N.N., Chemistry and technology of basic organic and pe			/lir Publ.,		
Moscova, 1981		•			
4. Chauvel, A. Lefebvre, G., Petrochemical processes, vol I, II, Institut	Francais	du Petrole Publications	Editions		
Technip, Paris, 1989					
5. Matar, S., Hatch, L.F., Chemistry of petrochemical processes, 2nd e	edition, G	ulf Publishing Company	Houston,		
Texas, 2000					
6. Silla, H., Chemical process engineering. Design and economics, Ma					
7. Chaudhuri, U.R., Fundamentals of Petroleum and Petrochemical Er	ngineering	g, CRC Press, Boca Rat	on, London,		
New York, 2011					
8. Moulijn, J.A., Makkee, M., Van Diepen, A.E., Chemical process tech	nology, 2	and edition, John Wiley a	and Sons,		
Chichester, UK, 2013		oufooturo. Toobaolo <i>m</i> co	nd Engling origina		
9. Cybulski, A., Sharma, M.M., Moulijn, J.A., Sheldon, R.A., Fine chem	licais ma	nutacture: Technology a	na Engineering		
Elsevier, 2001 10. Sheldon, R.A., Arends, I., Hanefeld, U., Green chemistry and Cata		ov VCU Vorlag CmbU	and Ca. KCaA		
Weinheim, Germany, 2007	19515, 9911	ey – von venag Ginbri	anu CO. KGaA		
11. Turton, R., Bailie, R.C., Whiting, W.B., Shaeiwitz, J.A., Analysis, sy	nthesis a	and design of chemical r	rocassas 3_rd		
edition, Prentice Hall, New Jersey, Boston, 2009					
12. Ekinci, D. (editor), Medicinal chemistry and drug design, INTECHC	PEN CO	M Rijeka Croatia 2012			
13. Verbeek, C.J.R., Products and applications of biopolymers, InTech					
14. Doble, M., Kruthiventi, Green chemistry and processes, Elsevier Ir					
8.2. Seminar / laboratory	Tin		s Comment		
Hazard and safety in laboratory; types of reactors and auxiliary tools;	2	v			
physicochemical methods of analysis; writing/making laboratory report	S				
Synthesis gas by steam reforming of methane/methanol.	4				
Chromatographic analysis of products		Conversation			
Styrene by ethylbenzene dehydrogenation (with steam/with CO ₂).	8	Conversation,	Compulso		
Chromatographic analysis of products		explanation,	Compulso		
Styrene/Methylmethacrylate polymerization – suspension and emulsion 6 debate					
techniques					
Furfural from bio-resources (pentozanes) 4					
Processing and interpretation of experimental results. Numerical	4				
applications. Evaluation of knowledge					
Bibliography					

1. Ullmann's Encyclopedia of Industrial Chemistry, 40 Volume Set, 7th Edition. Wiley-VCH, 2011 F 432.18/Ed.2

 Kirk-Othmer Encyclopedia of Chemical Technology Fourth Edition, John Wiley & Sons, 1998; Opris, I., Cigolea, V., Movileanu, D., Petrochimie – Caiet de lucrari practice, ed. a II-a, vol I, UPG, Ploiesti, 2001 					
8.3. Project Time Teaching methods Com					
Bibliography					

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploiești and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade		
10.4. Course	Theoretical knowledge, evaluated by questions on the subjects presented during the course	Oral assessment	80%		
10.4. 000136	Applicative knowledge, evaluated by solving problems/numerical applications	Oral assessment			
10.5. Seminar / laboratory	General and detailed knowledge about processes studied in the laboratory Applicative knowledge, evaluated by solving specific problems of the petrochemical processes and fine chemicals synthesis	Evaluation of activity and laboratory reports	20%		
10.6 Project					
10.7. Minimum performance standard					
For mark 5: minimum attendance at the course 75%; solving 50% of the theoretical and applicative questions/items - for the exam					
For mark 5: obtaining 50% of the points granted for general knowledge and demonstration of the minimum level in understanding and use of laboratory specific knowledge and activities – for the laboratory session					