COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum – Gas University of Ploiești
1.2. Faculty	Petroleum Technology and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title	Practice for elaboration of the dissertation					
2.2. Course coordinator						
2.3. Laboratory / seminar coordinator			Prof. Dragos Ciuparu			
2.4. Project coordinator						
2.5. Year of study		2				
2.6. Semester *		3				
2.7. Evaluation type		V				
2.8. Course type - formative catego	ry ** DS		2.9. Type of subject matter ***	С		

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

7

 \triangleright

	•	-	-		•				
3.1. Number of hours per week	30	of which: 3.	.2. course	-	3.3. Seminars/laboratories	30	3.4.	Project	-
3.5. Total hours from curriculum	120	of which: 3.	.6. course	-	3.7Seminars/laboratories	120	3.8	Project	-
3.9Time distribution								ho	ours
Study of textbook, course su	oport,	bibliograpl	hy and not	es					
Further reading in the library,	on or	line platfo	rms and fie	eldw	ork			7	
Preparing seminars / laboratories, homework, portfolios and essays									
Tutoring					•				
Examinations					1				
Other activities									
3.10. Total hours of individual study 6									
3.11. Total hours per semest	er	126							

3.11. Total hours per semester 3.12. Number of credits

4. Prerequisites (where applicable)

4.1. of curriculum	 General chemical engineering and transfer phenomena;
4.2. of skills	$\mathbf{\hat{k}}$

5. Requirements (where applicable)

5.1. of course

5.2. of seminars/laboratory	Laboratories/companies with appropriate infrastructure needed for
	the elaboration of the dissertation thesis.

6. Specific competences

Professional competences	AAAA	Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining; Conceptual design of chemical processes; Real time control of processes and plants in the chemical industry; Modeling, simulation and design of chemical processes.
Cross-curricular competences		Documentation, information and scientific literature research; Advanced knowledge of computer, internet and specific chemical engineering software; Independent and autonomous achievement of individual professional tasks.

7. Course objectives (based on the competence grid)

•	• • /
7.1. General objective	 Elaboration of an original dissertation thesis, under coordination,
	observing the specific chemical engineering professional standards.
7.2. Specific objectives	Detailed documentation, from updated and reliable sources, with
	respect to an industrial process;
	Apply in practice the general chemical engineering knowledge for
	case study or a certain process;
	Use computer and specific software modelling, simulation and
	optimization of chemical process;
	Analysis and/or design of chemical processes aiming to obtain
	quantifiable economic benefits.

8. Contents

8.1. Course	Time	Teaching methods	Comments
Bibliography			
8.2. Seminar / laboratory	Time	Teaching methods	Comments
Safety training and specific legislation	6	Place-specific training	
Documentation regarding the process,	30	Coordinated individual study	
equipment and technology used for the			
process design or analysis;			
Selection of technology and setting the working	60	Coordinated individual study	
parameters of the analysed or designed			
process, using specific software			
Economic analysis, calculations of	15	Coordinated individual study	
expenditures and profitability analysis			
Conception and writing of the dissertation	9	Coordinated individual study	

thesis. observing the chemical engineering							
quality and ethical standards.							
Bibliography	Bibliography						
1. ***Operation manuals of chemical plants							
2. Kirch-Othmer Encyclopedia of Chemical Technology, Web of Knowledge, Scopus, Compendex							
Engineering Library, Science Direct, Springer							
3. Proll User manual, Unisim Design user manual							
8.3. Project	Time	Teaching methods	Comments				
Bibliography							

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade		
10.4 Course					
	Frequent and efficient	Periodic monitoring of the	50%		
	collaboration with the coordinator	thesis progress			
10.5. Seminar / laboratory	Originality of the thesis, accuracy of calculations and synthetic capacity assessed by the coordinator	Oral evaluation	25%		
10.6. Project					
10.7. Minimum performance standard					
Students are capable to elaborate an original dissertation thesis regarding an industrial case study, using IT tools specific for chemical engineering computations and assessing the process economics.					