COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing and Environmental Engineering
1.4. Field of study	Chemical engineering
1.5. Study cycle	Full time
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title Pro	Process modeling, simulation and optimization				
2.2. Course coordinator	Fendu Elena Mirela				
2.3. Laboratory / seminar coordinator	nator Nicolae Marilena				
2.4. Project coordinator		-			
2.5. Year of study					
2.6. Semester *					
2.7. Evaluation type			am		
2.8. Course type - formative category ** DD			2.8. Type of subject matter ***	C	,

^{*} the semester number is in accordance with the curriculum;

3. Total estimated time (teaching hours per semester)

3.1. Number of hours perweek	4	of which: 3.2. course	2	3.3. Seminars/laboratories	2	3.4 Project	-
3.5Total hours from curriculum	5	of which: 3.6. course	28	3.7Seminars/laboratories	28	3.8 Project	-
	6						
3.9 Time distribution							hours
Study of textbook, course sup	port,	bibliography and note	S				10
Further reading in the library, on online platforms and fieldwork						14	
Preparing seminars / laboratories, homework, portfolios and essays						4	
Tutoring						3	
Examinations						3	
Other activities							
3.10. Total hours of individual	stuc	ly 34					

3.10. Total hours of individual study 3.11. Total hours per semester 90 3.12 Number of credits 5

4. Prerequisites (where applicable)

4.1. of curriculum	~	Numerical Methods, Computer Programming, Mass Transfer Processes
4.2. of skills	λ	Thermodynamic calculations

F 432.18/Ed.1 Document de uz intern

^{**} fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

^{***} compulsory = C; optional = O; elective = E

5. Requirements (where applicable)

5.1. of course	Projector, screen, computer
5.2. of seminars/laboratory	Computers with PRO/II Software process simulation program

6. Specific competences

Professional competences	 Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining. Equipment, process and plant design. Modeling, simulation and design of chemical processes.
Cross-curriculum competences	 Documentation, information and scientific literature research. Independent and autonyms achievement of individual professional tasks. Advanced knowledge of computer, internet and specific chemical engineering software. Management organization and planning of professional teams and organizations.

7. Course objectives (based on the competence grid)

7.1. General objective	Acquiring skills in the field of chemical process simulation and optimization
7.2. Specific objectives	➤ The ability to perform calculations in the chemical process simulation
	➤ The ability to evaluate, explain and interpret processes that are optimized

8. Contents

8.1. Course	Time	Teaching methods	Comments
Modeling and simulation of unit processes	10	Course material made	
Modeling and simulation of distillation	5	available in the form of slides,	
columns		books in PDF format	
Convergence	3	- Interactive Teaching using	
Simulation of recycling processes	3	Power Point, PRO / II	
Display the results and their interpretation	2	Simulator Software	
Optimization methods	5	- Questions and periodic tests	

Bibliography

- 1. Seider. Seader, Lewin, Process Design Principles John Wiley & Sons, Inc., 1999
- 2. Douglas, Conceptual Design of Process Engineering, McGraw Hill, 1988
- 3. Bohîlţea, Cursaru, D., Elemente de modelare şi optimizare a proceselor chimice, MatrixRom, 2009.

8.2. Seminar / laboratory	Time	Teaching methods	Comments
Modeling and simulation of unit processes	10		

F 432.18/Ed.2 Internal use document

Modeling and simulation of distillation	5	
columns		
Convergence	3	
Simulation of recycling processes	3	
Display the results and their interpretation	2	
Chemical process optimization	5	

Bibliography

- 1. *, PRO/II Manuals
- 2. Bohîlţea, Cursaru, D., Elemente de modelare şi optimizare a proceselor chimice, MatrixRom, 2009.

8.3. Project	Time	Teaching methods	Comments
Bibliography			

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade			
	Presence	Presence	10%			
10.4. Course	Quality and quantity of accumulated knowledge	Practical exam, computer applications	60%			
	Quality and quantity of	Presence	30%			
10.5. Seminar / laboratory /	accumulated knowledge	The accuracy of laboratory works				
		The accuracy of homework's				
10.6 Project						
10.7. Minimum performar	nce standard	1				
Circulation and autimination of a shawing laws and						

Simulation and optimization of a chemical process.

F 432.18/Ed.2 Internal use document