COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum – Gas University of Ploiești
1.2. Faculty	Petroleum Technology and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title P	Professional practice 2			
2.2. Course coordinator				
2.3. Laboratory / seminar coordinator		Prof. Dragoş Ciuparu		
2.4. Project coordinator				
2.5. Year of study		1		
2.6. Semester *		2		
2.7. Evaluation type		V		
2.8. Course type - formative category	y** DSI		2.9. Type of subject matter ***	С

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

4

	•	• •		•			
3.1. Number of hours per week	3	of which: 3.2. course		3.3. Seminars/laboratories	3	3.4. Proje	ect
3.5. Total hours from curriculum	42	of which: 3.5. course		3.6. Seminars/laboratories	42	3.7. Proje	ect
3.8. Time distribution					hours		
Study of textbook, course supp	port,	bibliography and not	es				4
Further reading in the library, o	on or	line platforms and fi	eldw	ork			18
Preparing seminars / laboratories, homework, portfolios and essays				7			
Tutoring							
Examinations				1			
Other activities							
3.7. Total hours of individual s	tudy	30					
3.8. Total hours per semester		72					

3.8. Total hours per semester 3.9. Number of credits

4. Prerequisites (where applicable)

4.1. of curriculum	Transfer phenomena and specific equipment or equivalent		
4.2. of skills	 General chemical engineering design skills; 		
4.2. 01 36113	➢ General IT skills;		

5. Requirements (where applicable)

5.1. of course	
5.2. of seminars/laboratory	Room with computers connected to the internet;
	Microsoft Excel
	Computer licenses for chemical process modelling and simulation
	software: Proll, Aspen Engineering or similar, Mathcad,
	Mathematica, Matllab, etc.

6. Specific competences

Professional competences	AA	Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining; Modeling, simulation and design of chemical processes.
Cross-curricular competences		Documentation, information and scientific literature research; Advanced knowledge of computer, internet and specific chemical engineering software;

7. Course objectives (based on the competence grid)

7.1. General objective	Students are able to apply in practice general engineering knowledge and tools.
7.2. Specific objectives	 Learn how to get informed from reliable sources with respect to an industrial process; Learn how to use engineering computational methods applied to a real industrial case;
	 Learn how to use computer and software tools for engineering computations applied to a chemical process; Learn how to analyse the economics of chemical processes.

8. Contents

8.1. Course	Time	Teaching methods	Comments
Bibliography			
8.2. Seminar / laboratory	Time	Teaching methods	Comments
1. Modelling and simulation of transfer	12	Coordinated individual study	
phenomena			
2. Modelling and simulation of chemical	8	Coordinated individual study	
reactions and reactors			
3. Industrial process and plant design;	10	Coordinated individual study	

4. Economic analysis, estimation of capital	12	Coordinated individual study				
expenditure and operation expenditure;						
Bibliography						
Kirch-Othmer Encyclopedia of Chemical Technol	Kirch-Othmer Encyclopedia of Chemical Technology, Web of Knowledge, Scopus, Compendex					
Engineering Library, Science Direct, Springer						
8.3. Project	Time	Teaching methods	Comments			
Bibliography						

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade		
10.4. Course					
10.5. Seminar /	Capacity to apply in practice the general chemical engineering knowledge	Practical	50%		
laboratory	Capacity to use software tools in practice	Practical	25%		
	Capacity to get informed and select reliable information	Practical	25%		
10.6. Project					
10.7. Minimum performance standard					
> Students are capable to elaborate an original report regarding an industrial case study, using IT tools					
for chemical engineering computations and assessing the process economics .					