COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title	Risk engineering in petroleum processing industry			
2.2. Course coordinator	Ph		J.EngLecturer Costin Ilinca	
2.3. Laboratory / seminar coordina	/ seminar coordinator Phd.EngLecturer Costin Ilinca			
2.4. Project coordinator	-			
2.5. Year of study				
2.6. Semester *	2 nd			
2.7. Evaluation type				
2.8. Course type - formative categ	ory **	DS	2.8. Type of subject matter ***	С

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

3.1. Number of hours	4	of which: 3.2.course	2	3.3. Seminars/laboratories	2	3.4Project	-
per week							
3.5Total hours from	56	of which: 3.6 course	28	3.7Seminars/laboratories	28	3.8 Project	-
curriculum							
3.9Time distribution							hours
Study of textbook, course support, bibliography and notes							
Further reading in the library, on online platforms and fieldwork							20
Preparing seminars / laboratories, homework, portfolios and essays							10
Tutoring							
Examinations							10
Other activities							
3.10. Total hours of individual study 34							
3 11 Total hours per ser	nester	56					

o. TT. Total hours per semester	50
3.12. Number of credits	5

3. Prerequisites (where applicable)

4.1. of curriculum	Mechanical engineering
4.2. of skills	\checkmark

4. Requirements (where applicable)

5.1. of course	Students will not attend lectures, seminars with open mobile phones.					
	Also, telephone conversations will not be tolerated during the course,					
	nor do students leave the classroom to take over personal telephone					
	calls;					
	The students' delay in the course will not be tolerated as it turns out to					
	be disruptive to the educational process;					
	The course will be hosted in a computer room, videoprojector,					
	blackboard and Internet connection.					
5.2. of seminars/laboratory	The delay of the students at the laboratory and the seminar will not be					
	tolerated because it is proving to be disruptive to the educational					
	process. The term of the tuition of the papers is determined by the					
	student in agreement with the students. Claims for postponement will					
	not be accepted for reasons other than a legitimate objective. Also, for					
	late submission of the papers, papers will be submitted.					

5. Specific competences

fessional	npetences	 PC1. Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining. PC2. Characterization of physical and chemical structural properties, of petroleum products by complex analytic methods. PC3. Equipment, process and plant design.
Pro	соп	PC4. Real time control of processes and plants in chemical industry. PC5. Modeling, simulation and design of chemical processes.
Cross-curricular	competences	 TC1. Documentation, information and scientific literature research. TC2. Independent and autonoms achievement of individual professional tasks. TC3. Advanced knowledge of computer, internet and specific chemical engineering software. TC4. Management organization and planning of professional teams and organizations.

6. Course objectives (based on the competence grid)

7.1. General objective	consists in acquiring knowledge and creating the necessary skills to know the main concepts of the notion of risk and technical security and the interpretation of the results obtained from the technical / technological risk analyzes.
7.2. Specific objectives	consist in acquiring knowledge and building competencies in performing technical / technological risk analyses.

7. Contents

8.1. Course	Time	Teaching methods	Comments
-------------	------	------------------	----------

Security and technical risk. Fundamental			
concepts, notations used, relationships of	2	lecture; debate	
Disk Eactors Identification and			
classification intrinsic factors extrinsic	2	lecture: debate	
factors, associated factors, human factor.	_		
The main mechanical criteria of technical			
security regarding technology equipment.			
Generalities, technical security criteria for			
mechanical resistance, technical safety	2	lecture; debate	
criteria for prevention of cracking and			
technical safety criteria for ensuring			
mechanical stability			
Prevention of rupture / destruction through			
the flute. Larson Miller Parameters	2	lecture; debate	
Breakthrough analysis chart.			
Oligocyclic burden. The Palmgren-Miner	2	lecture: debate	
criterion of linear cumulation of damage.			
RISK IN petrochemical technological			
evaluation Risk parameters quantifiable	2	lecture; debate	
risk.			
Analysis of technical / technological risks			
according to the normative SR EN 1050-	4	lecture: debate	
2000. Technical and technological risk			
analyses at national level.			
Furchage lovel EMAE / EMECA type			
analyses according to MIL-STD 1629	4	lecture: debate	
Generalities. Basic principles (procedures)			
in FMECA type assays.			
Strategies for technical risk analysis. FTA-			
type analyses. The process of realizing			
the fault logic tree, defining the analysed	4	lecture; debate	
system of interest, defining the "IOP"			
structure of the fault logic tree			
Analysis of technical technical risks using			
the MADS-MOSAR method. Presentation	Α	laatura: dahata	
and substantiation of Module A and	4	iecture, debate	
Module B analysis			
Bibliography			

1. <u>Borgovini, Robert;</u> Pemberton, S.; Rossi, M. (1993). *Failure Mode, Effects and Criticality Analysis* (*FMECA*) (pdf). B. Reliability Analysis Center. p. 5. CRTA–FMECA. Retrieved 2010-03-03.

- 2. <u>Analysis techniques for system reliability Procedure for failure mode and effects analysis (FMEA)</u> (pdf). International Electrotechnical Commission. IEC 812. Retrieved 2013-08-08.
- 3. Larsen, Waldemar (January 1974). Fault Tree Analysis. Picatinny Arsenal. Technical Report 4556. Retrieved 2014-05-17.
- 4. Ericson, Clifton (1999). "Fault Tree Analysis A History" (PDF). Proceedings of the 17th International Systems Safety Conference. Archived from the original (pdf) on 2011-07-23. Retrieved 2010-01-17.

 PavelA., TeodorescuM., Kulin M., Dumitru Gh. – Ţevi. Tubulaturi. Componente tubulare. Coloane tubulare. Expetize tehnice. Studii de caz. Cercetări şi analize. Bucureşti, Editura Ilex, 2003. Perilhon P. - MADS-MOSAR. Méthodologie d'Analyse des Dysfonctionnements des Systémes - Méthode Organisée et Systémique d'Analyse de Risques. Description et illustration. Antenne Enseignement de Grenoble, Institut National des Sciences et Techniques Nucléaires, 1995.

8.2. Seminar / laboratory	Time	Teaching methods	Comments		
Probabilistic substantiation of safety		5			
coefficients. Creating specific interactive graphical interfaces in the MATLAB	4	Case studies; Debate			
programming environment.					
The numerical approach of the Larson- Miller parametric method. Creating specific interactive graphical interfaces in the MATLAB programming environment.	6	Case studies; Debate			
Using and drawing breakout charts. Creating specific interactive graphical interfaces in the MATLAB programming environment.	4	Case studies; Debate			
Using the FTA method in analysis in quantification of ethnic risk in oil and petrochemical plants. Case studies.	4	Case studies; Debate			
The use of the FMEA / FMECA method in the analysis of quantification of ethnic risk in petroleum and petrochemical installations. Case studies through the specialized program Xfmea.	6	Case studies; Debate			
The use of the MADS-MOSAR method in analysis in the quantification of ethnic risk in oil and petrochemical plants. Case studies.	4	Case studies; Debate			
Bibliography					
 <u>Borgovini, Robert;</u> Pemberton, S.; Rossi, M. (1993). <i>Failure Mode, Effects and Criticality Analysis</i> (<i>FMECA</i>) (pdf). B. Reliability Analysis Center. p. 5. CRTA–FMECA. Retrieved 2010-03-03. Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA) (pdf). 					
International Electrotechnical Commission. IEC 812. Retrieved 2013-08-08.					
3. Larsen, Waldemar (January 1974). Fa Retrieved 2014-05-17.	ult Tree Analysis	s. Picatinny Arsenal. Technical Repor	t 4556.		
 Ericson, Clifton (1999). "Fault Tree Analysis - A History" (PDF). Proceedings of the 17th International Systems Safety Conference. Archived from the original (pdf) on 2011-07-23. Retrieved 2010-01-17. 					

 PavelA., TeodorescuM., Kulin M., Dumitru Gh. – Ţevi. Tubulaturi. Componente tubulare. Coloane tubulare. Expetize tehnice. Studii de caz. Cercetări şi analize. Bucureşti, Editura Ilex, 2003. Perilhon P. - MADS-MOSAR. Méthodologie d'Analyse des Dysfonctionnements des Systémes - Méthode Organisée et Systémique d'Analyse de Risques. Description et illustration. Antenne Enseignement de Grenoble, Institut National des Sciences et Techniques Nucléaires, 1995.

8.3. Project	Time	Teaching methods	Comments
-			

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploiești and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade
10.4. Course	The evaluation considers the following categories knowledge: - theoretical assessed by questions related to topics presented in the course - theoretical and Applied Assessed by Final Examination	Written paper	70%
10.5. Seminar / laboratory	General and detailed knowledge assessed by questions about the subject and the working conditions of the laboratory work	Laboratory Activity Assessment; drawing up the papers and interpreting the results of the experimental parts	30%
10.6 Project	-	-	-
10.7. Minimum performance standard			
- For note 5 it is necessary to obtain a minimum score of 50% for the theoretical knowledge, as well as to prove a			

minimum level of understanding and solving the applications in the exam subject (minimum 50%).

 \neg For 10 it is necessary to obtain a maximum score for theoretical knowledge and complete and correct solving of the exam subjects (minimum 95%).

Laboratory activity:

- Note 5 requires a minimum level of 50% for general knowledge as well as a minimum level of understanding and use of laboratory-specific knowledge.

- For Note 10 it is necessary to prove a minimum level of 90% for the specific knowledge of the laboratory