COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing and Environmental Engineering
1.4. Field of study	Chemical engineering
1.5. Study cycle	Master Degree
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title Tec	Technologies for alternative fuels manufacturing				
2.2. Course coordinator		Profe	ssor PhD Ion Onuţu		
2.3. Laboratory / seminar coordinator	dinator Professor PhD Ion Onutu				
2.4. Project coordinator	-				
2.5. Year of study		1			
2.6. Semester *		2			
2.7. Evaluation type			1		
2.8. Course type - formative category ** DS		2	2.8. Type of subject matter ***		0

^{*} the semester number is in accordance with the curriculum;

3. Total estimated time (teaching hours per semester)

	•	•		•			
3.1. Number of hours per week	5	of which: 3.2.course	3	3.3. Seminars/laboratories	2	3.4 Project	-
3.4. Total hours from curriculum	70	of which: 3.5.course	42	3.6. Seminars/laboratories	28	3.8 Project	-
3.9. Time distribution							hours
Study of textbook, course support	rt, bi	bliography and notes					5
Further reading in the library, on online platforms and fieldwork					5		
Preparing seminars / laboratories, homework, portfolios and essays					10		
Tutoring					5		
Examinations					10		
Other activities					3		
3.10. Total hours of individual st	udy	38					
3.11. Total hours per semester 108							

4. Prerequisites (where applicable)

3.12. Number of credits

<u>-</u>	•	
4.1 of ourriculum	>	Thermo catalytic Processes
4.1. of curriculum Organic chemistry, Petrochemistry		Organic chemistry, Petrochemistry
4.2. of skills	>	
4.2. UI SNIIIS	>	

^{**} fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

^{***} compulsory = C; optional = O; elective = E

5. Requirements (where applicable)

5.1. of course	Course room equipped with video projector and screen
5.2. of seminars/laboratory	➤ Laboratory equipped with equipment specific to laboratory work and
	provided with related infrastucture

6. Specific competences

		PC1. Description, analysis and advanced utilization of engineering concepts and fundamental
_	ဟ	theories in petroleum refining.
na	ည	PC2. Characterization of physical and chemical structural properties, of petroleum products by
Sio	ten	complex analytic methods.
Professional	competences	PC3. Equipment, process and plant design.
S C	ρ	PC4. Real time control of processes and plants in chemical industry.
	0	PC5. Modeling, simulation and design of chemical processes.
<u>=</u>		TC1. Documentation, information and scientific literature research.
Ħ	es	TC2. Independent and autonoms achievement of individual professional tasks.
<u>:</u> 은	2	TC3. Advanced knowledge of computer, internet and specific chemical engineering software
Cross-curricular	competences	TC4. Management organization and planning of professional teams and organizations.
S	ğ	104. Management organization and planning of professional teams and organizations.
OS	ollo	
င်	ပ	

7. Course objectives (based on the competence grid)

7.1. General objective	➤ The course aims to familiarize students with innovative processes of alternative fuels production
7.2. Specific objectives	 Knowledge and identification of physicochemical characteristics, specific combustion properties and unconventional fuels production processes Ability to compare manufacturing technologies and the life cycle of non-conventional fuels with conventional fuels Performance evaluation and identification of limitations due to the replacement or addition of such components in the MAS and MAC engines Identify and assess the economic aspects and the main aspects of specific emissions from combustion in motor vehicles by introducing alternative/nonconventional fuels

8. Contents

8.1. Course	Time	Teaching methods	Comments
8.1.1. General aspects about motor		Hours of video lectures, written	
vehicle types. Progress and trends in the		lectures,	
development of economic engines. Non-		problem-solving,	
pollutants fueled with conventional fuels.	4	documenting on the web,	
Current protection legislation		exemplification	
		·	

8.1.2. Alternative fuels: natural gas and		Hours of video lectures, written	
GTL (Gas to Liquid), hydrogen,		lectures,	
oxygenated organic compounds (alcohols		problem-solving,	
and ethers), biofuels: bioethanol,	12	documenting on the web,	
vegetable oils, vegetable and animal oils,		exemplification	
biodiesel, biokerosene			
8.1.3. Alternative fuel production			
technologies: LPG, CNG, GTL; hydrogen			
production; Technologies for the			
manufacture of oxygenated organic	20	Hours of video lectures, written	
compounds; Biofuels manufacturing		lectures,	
technologies		problem-solving,	
8.1.4. Alternative fuel storage and feeding		documenting on the web,	
systems	2	exemplification	
8.1.5. Pollutant emissions to cars powered			
by alternative fuels	2		
8.1.6. Economic considerations regarding			
the use of unconventional fuels	2		
Dir. I			

Bibliography

- 1. Knothe, G., Gerpen, J. V., Krahl, J., The biodiesel handbook, AOCS Press, 2005.
- 2. Speight, J. G., The refinery of the future, Elsevier Science, Norwich, N.Y., Oxford, 2011.
- 3. Singh, A., Rathore, D., *Biohydrogen production: sustainability of current technology and future perspective*, Springer (India), 2017.
- 4. Twidell, J., Weir, T., Renewable energy resources, 2nd Edition, Taylor &Francis, 2007.
- 5. Hubca, Gh., Lupu, A., Cociaşu, C.A., *Biocombustibili, Biodiesel Bioetanol Sun diesel*, Editura Matrix Rom, Bucuresti, 2008.
- 6. *** Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009.
- 7. Lee. S., Speight, J.G., Loyalka, S.K., Handbook of alternative fuel technologies, CRC Press, 2007.

8.2. Seminar / laboratory	Time	Teaching methods	Comments
8.2.1. Develop optimal blending of clean		Consultation of literature and	
engine fuels		industry data, use of blending	
	10	software, blending of fuels,	
		identification and use of	
		standardized analysis methods	
8.2.2. Selection and complex analytical		Identifying and using	
characterization of alternative components	4	standardized methods,	
used in automotive fuel		performing of controled	
		experiments, mathematical	
		data processing, discussion	
		and interpretation of the results	
8.2.3. Determination of blending properties	10	Identifying and using	
of reformulated fuels		standardized methods,	
8.2.4. Establishing experimental		performing of controled	

correlations of the characteristics of	4	experiments, mathematical	
reformulated fuels with the type and ratio		data processing, discussion	
of alternative fuel		and interpretation of the results	
Bibliography			
1. Standarde şi Norme Europene : EN 228, El	N 590, EN 589; E	EN 14214; EN 15376.	
2. PRO/II Reference Manual. 2014.			
8.3. Project	Time	Teaching methods	Comments
Bibliography	1	1	

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade
10.4. Course	The evaluation takes into account the following categories knowledge: Theoretical knowledge evaluated by questions related to topics presented in the course	Written paper	20%
	Theoretical and applied knowledge evaluated through the final examination	Written paper	60%
10.5. Seminar / laboratory	General and detailed knowledge assessed by questions related to the topic and working conditions of the laboratory work	Assessment of laboratory activity; Drawing up the reports and interpreting the results of the experimental part	20%
10.6 Project	-	-	-

10.6. Minimum performance standard

Written examination:

- For grade 5 it is necessary to obtain a minimum score of 50% for the theoretical knowledge, as well as to prove a minimum level of understanding and solving the applications in the subject (50% minimum)
- For grade 10 it is necessary to obtain a maximum score for theoretical knowledge and a complete and correct solving of the exam subjects (minimum 95%).

Laboratory activity:

- > Note 5 requires a minimum level of 50% for general knowledge as well as a minimum level of understanding and use of laboratory-specific knowledge.
- Note 10 requires a minimum of 90% for laboratory-specific knowledge.