COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploiesti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical engineering
1.5. Study cycle	Master
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title Therma	Thermal integration, energy efficiency and utility systems				
2.2. Course coordinator			poiţă Loredana Irena		
2.3. Seminar coordinator Popa Maria					
2.4. Project coordinator					
2.5. Year of study			1		
2.6. Semester *					
2.7. Evaluation type		written exam			
2.8. Course type - formative category ** DD			2.8. Type of subject matter ***	С	

^{*} the semester number is in accordance with the curriculum;

3. Total estimated time (teaching hours per semester)

	•	<u> </u>		<u> </u>			
3.1. Number of hours per week	6	of which: 3.2. course	3	3.3. Seminars/laboratories	2	3.4 Project	1
3.4. Total hours from curriculum	84	of which: 3.6 course	42	3.7 Seminars/laboratories	28	3.8 Project	14
3.9. Time distribution					1		hours
Study of textbook, course suppo	rt, bi	bliography and notes					10
Further reading in the library, on online platforms and fieldwork						2	
Preparing seminars / laboratories, homework, portfolios and essays						8	
Tutoring					2		
Examinations					2		
Other activities						0	
3.10.Total hours of individual study 24							
3.11. Total hours per semester		108					
3.12. Number of credits		6					

4. Prerequisites (where applicable)

4.1. of curriculum	Heat transfer processes, Thermo energetics
4.2. of skills	

^{**} fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

^{***} compulsory = C; optional = O; elective = E

5. Requirements (where applicable)

5.1. of course	The classroom with blackboard, screen, video projector
5.2. of seminars/project	The room with blackboard, screen, video projector, computers

6. Specific competences

Professional competences	PC1. Description, analysis and advanced utilization of engineering concepts and fundamental theories in petroleum refining. PC2. Equipment, process and plant design. PC3. Real time control of processes and plants in chemical industry.
Cross-curricular competences	TC1. Documentation, information and scientific literature research. TC2. Independent and autonoms achievement of individual professional tasks. TC3. Advanced knowledge of computer, internet and specific chemical engineering software. TC4. Management organization and planning of professional teams and organizations.

7. Course objectives (based on the competence grid)

7.1. General objective	The main objective of the course is to deepen and develop				
	knowledge in the fields of heat transfer and thermoenergetics in				
	order to facilitate the finding of energy efficient solutions in certain				
	technological processes.				
7.2. Specific objectives	At the end of the course, students will be able to:				
	- identify the practical situations in which heat transfer mechanisms				
	occur;				
	- illustrate the role of utility systems in technological processes;				
	- define and list the composition and characteristics of heat supply				
	systems and utilities;				
	- find solutions to increase energy efficiency.				

8. Contents

8.1. Course	Time	Teaching methods	Comments
Heat Transfer Mechanisms	2		
Partial and overall heat transfer	2		
coefficients			
Heat exchangers. Thermal and	6		
hydraulic calculation			
4. Performance indicators of heat	3		
exchangers. Increase the efficiency of			
heat exchangers			
5. Combustion processes. Tubular	6		
furnaces. Real and optimized heat			

balance			
6. Thermal energy regenerative systems	2		
7. Thermal energy recovery systems	2		
8. Cooling water systems used in refinery	3		
9. Production and use systems of steam	5	Interactive exposition,	
in refinery		problem-solving,	
10. Thermoenergetics systems with	5	heuristic conversation,	
cogeneration		exemplification.	
11. Thermal integration of heat exchanger	2		
networks using the Pinch method			
12. Fuel supply systems	2		
13. Inert gas supply systems	2		

Bibliography

- 1. Incropera, F., Dewitt, D. P., Fundamentals of heat and mass transfer, Seventh edition, John Wiley and Sons, U.S.A., 2011.
- 2. Popescu, N., Dinu, R. C., Energetica instalaţiilor de producere a energiei în cogenerare, Editura Universitară, Craiova, 2013.
- 3. Allan, P. R., Improve Energy Efficiency via Heat Integration, American Institute on Chemical Engineering, December, 2010.
- 4. Cao, E., Heat transfer in process engineering, The McGraw-Hill Companies, USA, 2010.
- 5. Green, D.W, Perry R. H., Perry's Chemical Engineers' HandBook, 8nd ed., McGrawHill, USA, 2008.
- 6. Lienhard, J. H. IV, Lienhard J.H.V, A heat transfer Textbook, 4th ed., Phlogiston Press, Cambridge, Massachusetts, U.S.A., 2011.
- 7. Rokni, M., Introduction to Pinch Technology, Kgs. Lyngby: Technical University of Denmark, 2016, http://orbit.dtu.dk/files/123620478/Pinch Tech 1.pdf.
- 8. Jiří, J. K., Zdravko, K., Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP), Current Opinion in Chemical Engineering, Vol. 2, No. 4, 2013.

8.2. Seminar	Time	Teaching methods	Comments
Logarithmic mean temperature difference	12		
for flows in a heat exchanger. Heat			
exchangers - with and without phase			
transformation - applications		Camain are are as due to d	
Combustion calculations and thermal	4	Seminars are conducted	
balances on furnaces - applications		interactively, discussing the results	
Thermal power plants - applications	4	resuits	
Optimizing a heat exchanger network by	8		
applying the PINCH method - example of			
calculation			

Bibliography

- 1. Green, D.W, Perry R. H., Perry's Chemical Engineers' HandBook, 8nd ed., McGrawHill, USA, 2008.
- 2. Allan, P. R., Improve Energy Efficiency via Heat Integration, American Institute on Chemical Engineering, December, 2010.
- 3. Lienhard, J. H. IV, Lienhard J.H.V, A heat transfer Textbook, 4th ed., Phlogiston Press, Cambridge, Massachusetts, U.S.A., 2011.
- 4. Rokni, M., Introduction to Pinch Technology, Kgs. Lyngby: Technical University of Denmark, 2016, http://orbit.dtu.dk/files/123620478/Pinch_Tech_1.pdf.

8.3 Project	Time	Teaching methods	Comments
-------------	------	------------------	----------

Presentation of a technological unit	1		
Establishing initial design data, example	2		
application			
Presentation of the thermal balance for a	2		
heat exchanger		Interactive exposition,	
Calculation of heat transfer coefficients for the heat exchanger;	6	problem-solving, discussing	
Setting the calculation algorithm in the		the results	
Excel program.			
Simulation of results with PROII software.			
Interpretation of the results obtained	1		
Project evaluation	2		

Bibliography

- 1. Dobrinescu, D., Procese de transfer termic şi utilaje specifice, EDP, Bucureşti, 1983.
- 2. Pătrașcu, C., Termoenergetica prelucrării petrolului, Editura UPG, Ploiești, 2003.
- 3. Popa, B., Manualul inginerului termotehnician, Ed. Tehnică, București, 1986.
- 4. Ludwig, E., Applied Process Design for chemical and Petrochemical Plants, Golf Publishing Company, Texas, 1987.
- 5. Incropera, F., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2002.
- 6. Leca, A., Transfer de căldură și masă, Ed. Tehnică, București, 1998.

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploieşti and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade
10.4. Course 10.5 Seminar	Theoretical knowledge evaluated by questions related to the subjects presented in the course		35 %
	Applied knowledge evaluated by solving problems / numerical applications similar to those presented at the seminar	Written exam	40%
10.6. Project	Theoretical knowledge evaluated by questions related to the subjects presented in the project; Rhythmicity for each stage of the project.	Oral test	25 %

Evaluation conditions	The weighting in the final note applies if, by both assessment methods, notes are at least 5.	
10.7. Minimum performance standard		
Written examination:		
➤ For 5, it is necessary to obtain a minimum score of 50% for theoretical knowledge, as well as to prove a		

- minimum level of understanding and solving the applications in the exam subject (minimum 50%).
- > For 10 it is necessary to obtain a maximum score for theoretical knowledge and complete and correct solving of the applications in the exam subject (minimum 95%).