COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing Engineering and Environmental Protection
1.4. Field of study	Chemical Engineering
1.5. Study cycle	Master degree
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title	namic simulation and advanced control systems for chemical processes
2.2. Course coordinator	Lect. dr. eng. Popescu Marian
2.3. Laboratory coordinator	Lect. dr. eng. Popescu Marian
2.4. Project coordinator	
2.5. Year of study	
2.6. Semester *	3
2.7. Evaluation type	Exam
2.8. Course type - formative category	S2 2.8. Type of subject matter *** C

* the semester number is in accordance with the curriculum;

** fundamental = F0; domain = D1; speciality = S2; complementary = C3, thoroughgoing study =T4, synthesis = Sy 5

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

2	2	3.4. P	Project					
28	2	3.8. Pi	roject					
3.9. Time distribution								
Study of textbook, course support, bibliography and notes								
Further reading in the library, on online platforms and fieldwork								
Preparing seminars / laboratories, homework, portfolios and essays								
Tutoring								
Examinations								
3.10. Total hours of individual study 94								
3.11. Total hours per semester 150								
3.12. Number of credits 6								

4. Prerequisites (where applicable)

4.1. of curriculum	Basic Chemical Processes Control
4.2. of skills	Physical, chemical, mathematics knowledge

5. Requirements (where applicable)

5.1. of course	 Class room with table, multimedia equipment 		
5.2. of laboratory	Laboratory room, table, industrial control systems, chemical process		
	simulator, distributed control system		

6. Specific competences

Professional	competences	AA	Designs equipment and equipment for utilities: design of appliances, processes and installations with the application of knowledge in the field of chemical engineering. Real time control of processes and installations from chemical engineering
Cross-cur	competences	AAA	Ability to provide information and documentation in its field of activity, but also in related fields, in a language of international circulation. Efficient and effective performance of individual professional activities, under conditions of autonomy and professional independence. Knowledge, at an advanced level, of software specific to chemical engineering and computer and internet use.

7. Course objectives (based on the competence grid)

7.1. General objective	Dynamic modelling and simulation of chemical processes
	 Advanced control of chemical processes
7.2. Specific objectives	Numerical solving of differential equations
	Dynamic modelling of simple chemical processes
	Dynamic modelling of automatic control systems
	Fundamentals of automatic control systems for chemical processes
	Structures of automatic control systems for chemical processes
	Design, operation and exploitation of automatic control systems
	 Distributed control system configuration

8. Contents

8.1. Course	Time	Teaching methods	Comments
Numerical solving of ordinary differential	4	Interactive, based on multimedia	
equations		and student-centered techniques	
Dynamics of some simple chemical processes	6		
Dynamic simulation using transfer functions	4		
Concepts of hierarchical and distributed	4		
systems			
Numerical control equipment	4		
Distributed control systems	6		

Bibliography

- 1. Basu S., Chapter 1 General discussions on control systems, Editor(s): Basu S., Plant Intelligent Automation and Digital Transformation, Academic Press, Vol. 1, 2023, Pages 1-56.
- 2. Gillis A.S., Distributed Control System (DCS), TechTarget, 2023.
- 3. Kluever C. Dynamic Systems: Modeling, Simulation and Control, Wiley, 2019.
- 4. Mehta B.R., Reddy Y.J., Distributed control system, In: Industrial Process Automation Systems (pp.75-133), Elsevier, 2015.
- 5. Patrascioiu C., Popescu M., *Dinamica sistemelor chimice*, Editura MatrixRom, Bucuresti, 2015.
- 6. Patrascioiu C., Popescu M., Sisteme de conducere a proceselor chimice Aplicatii, Editura MatrixRom, Bucuresti, 2013.
- 7. Paraschiv N., Popescu M., Pătrășcioiu C. Advanced real time control of an industrial mass transfer process, Proceedings of the International Conference on Computational Heat and Mass Transfer (ICCHMT09), Guangzhou, China, 2009, pp 602-607.
- 8. Paraschiv N., Achiziția și prelucrarea datelor, Editura UPG Ploiești, 2013.
- 9. Paraschiv N., Popescu M., Sisteme distribuite de supervizare și control, Editura UPG Ploiești, 2014.
- 10. Popescu M., Distillation Column Hierarchical Control, REV. CHIM. (Bucharest), 69, No. 9, p 2595-2600, 2018.

11.	Raczynski S.,	Models	for	Research	and	Understanding	Exploring	Dynamic	Systems,	Unconventional
	Approaches, a	nd Applica	atior	s, Springer	Natu	re Switzerland A	G, 2022.			

Approaches, and Applications, Springer Nature Switzenand AG, 2022.					
8.2. Laboratory	Time	Teaching methods	Comments		
Numerical solving of ordinary differential	4	Student-centered interactive			
equations using MATLAB		teaching methods, in the sense			
Modelling and simulation of some simple	4	of monitoring and verifying the			
chemical processes		student's understanding of the			
Transfer functions. System simulation using	2	approached issues			
SIMULINK					
Basic knowledge of DeltaV distributed system	2				
Analog and digital inputs and outputs	8				
configuration					
FOUNDATION fieldbus system configuration	4				
Operating interfaces configuration	4				
		•			

Bibliography

- 1. Emerson Process Management DeltaV[™] M-series Traditional I/O, 2017.
- 2. Fisher-Rosemount Systems, Inc. DeltaV Books Online, 2013.
- 3. Paraschiv N., Popescu M. Sisteme distribuite de supervizare și control, Ed. Universității Petrol-Gaze din Ploiești, 2014.
- 4. Patrascioiu C., Popescu M., Dinamica sistemelor chimice, Editura MatrixRom, Bucuresti, 2015.
- 5. Patrascioiu C., Popescu M., *Sisteme de conducere a proceselor chimice Aplicatii*, Editura MatrixRom, Bucuresti, 2013.
- 6. Popescu M., Sisteme distribuite de supervizare și control Îndrumar de laborator, Editura UPG Ploiești, 2018.

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The discipline is monitored by representatives of refineries and design firms in the chemical field

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade
	Analytical solving and numerical solving algorithms of ordinary differential equations	Written test	20%
10.4. Course	Knowledge of dynamic models of simple systems	Written test	20%
	Understanding fundamentals of distributed control systems	Written test	20%
10.5. Laboratory	Numerical solving of ordinary differential equations	Homework	20%

	Modelling and numerical simulation of simple systems	Homework	10%		
	Understanding and implementation of distributed control systems configuration	Test	10%		
10.6. Project					
10.6. Minimum performance	standard				
> Analytical solving of an ordinary differential equation and graphical representation of the solution					
An example of a static characteristic of a process					
Basic knowledge o	f DeltaV distributed control systemeters	em			

Signature/date 05.02.2025

Course coordinator Ap

Laboratory coordinator

Map

Project coordinator

Date of approval in the department

20.03.2025

Head of department Assoc. prof. PhD. Eng. Neagu Mihaela Dean Assist. prof. PhD. Eng. Duşescu-Vasile Cristina

Dea