COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing and Environmental Engineering
1.4. Field of study	Chemical engineering
1.5. Study cycle	Full time
1.6. Study program	Chemical Engineering for Refineries and Petrochemical Industry

2. Course information

Process modeling, simulation and optimization				
2.2. Course coordinator		Elena Mirela		
itor	Assistant Prof. PhD. Eng. Fendu Elena Mirela			
	1st			
	2nd			
	Exam			
2.8. Course type - formative category ** DD		*** C		
	ator	Assistant Prof. PhD. Eng. Fendu ator Assistant Prof. PhD. Eng. Fendu 1st 2nd Exam		

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

6

	•	J			/			
3.1. Number of hours per week	5	of which: 3.2	. course	2	3.3. Seminars/laboratories	3	3.4. Proje	ct
3.5. Total hours from curriculum	70	of which: 3.5	. course	28	3.6. Seminars/laboratories	42	3.7. Proje	ct
3.8. Time distribution						hours		
Study of textbook, course sup	port,	bibliograph	y and no	tes				30
Further reading in the library,	on o	nline platfori	ms and f	ieldw	ork			20
Preparing seminars / laboratories, homework, portfolios and essays					20			
Tutoring								5
Examinations					5			
Other activities								
3.7. Total hours of individual s	study	80						
3.8. Total hours per semester		150						

4. Prerequisites (where applicable)

3.9. Number of credits

4.1. curriculum	 Computer Programming, Chemical Processes
4.2. skills	Thermodynamic calculations

5. Requirements (where applicable)

5.1. course	Projector, screen, computer
5.2. seminars/laboratory	 Computers with PRO/II Software process simulation program

6. Specific competences

Professional competences	 Defines the process and design of technical components: the description, analysis and advanced use of fundamental concepts and theories in the field of chemical engineering. Designs equipment and apparatus for utilities: the design of devices, processes and installations with the application of knowledge in the field of chemical engineering. Analyses production processes in order to improve: real-time management of processes and installations in the chemical industry. Develops design plans: Conceptual design of chemical processes. Advanced knowledge of software programs specific to chemical engineering and the use of computers and the internet.
Cross-urricular competences	 Ensures project management planning, organizing and leading professional groups or institutions. Ability to provide permanent information and documentation in his/her field of activity, but also in related fields, both in Romanian and in an internationally language. Efficient and effective performance of individual professional activities, in conditions of autonomy and professional independence. Ability to perform professional tasks as a team leader.

7. Course objectives (based on the competence grid)

7.1. General objective	Acquiring skills in the field of chemical process simulation and antimization
	optimization
7.2. Specific objectives	The ability to perform calculations in the chemical process simulation
	The ability to evaluate, explain and interpret processes that are
	optimized

8. Contents

8.1. Course	Time	Teaching methods	Comments
Modeling and simulation of unit processes	15	Course material made	
Convergence	3	available in the form of slides,	
Simulation of recycling processes	3	books in PDF format	
Display the results and their interpretation	2	- Interactive Teaching using	
Optimization methods	5	Power Point, PRO / II	
		Simulator Software	
		- Questions and periodic tests	

Bibliography

- 1. Seider. Seader, Lewin, Process Design Principles John Wiley & Sons, Inc., 1999.
- 2. Douglas, Conceptual Design of Process Engineering, McGraw Hill, 1988.
- 3. Bohîlţea, Cursaru, D., Elemente de modelare şi optimizare a proceselor chimice, MatrixRom, 2009.
- 4. Process Simulation of Aveva Software, AVEVA Group LimitedHigh Cross Madingley Road Cambridge CB3 0HB, UK, 2024.

8.2. Seminar / laboratory	Time	Teaching methods	Comments
Modeling and simulation of simple unit	6		
processes			

Modeling and simulation of complex unit	11	- Interactive Teaching using		
processes		PRO / II Simulator Software		
Convergence	5	and office package		
Simulation of recycling processes	5	- Questions and periodic tests		
Display the results and their interpretation	5			
Chemical process optimization	10			
Bibliography	•			
1. Process Simulation of Aveva Software, AVEVA Group LimitedHigh Cross Madingley Road				
Cambridge CB3 0HB, UK, 2024.				
2. Bohîlţea, Cursaru, D., Elemente de modelare şi optimizare a proceselor chimice, MatrixRom,				
2009.				
8.3. Project	Time	Teaching methods	Comments	

Bibliography

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in \geq Ploiesti and Bucharest that have hired graduates of similar master programs

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage of final grade	
	Presence	Presence	10	
10.4. Course	Quality and quantity of	Practical exam, computer	60	
	accumulated knowledge	applications		
10.5. Seminar/laboratory	Quality and quantity of	Presence	30	
	accumulated knowledge	The accuracy of laboratory		
		works		
		The accuracy of		
		homework's		
10.6. Project				
10.7. Minimum performance standard				
Simulation and optimization of a chemical process.				

Signature

Course coordinator

Seminar/laboratory coordinator

Project coordinator

date

05.02.2025

Date of approval in the department 20.03.2025

Head of department Associate Prof. PhD. Eng. Neagu Mihaela

Dean Assistant Prof. PhD. Eng. Duşescu -Vasile Cristina Maria

Sta