COURSE SYLLABUS

1. Program information

1.1. Institution	Petroleum-Gas University of Ploieşti
1.2. Faculty	Petroleum Refining and Petrochemistry
1.3. Department	Petroleum Processing and Environmental Engineering
1.4. Field of study	Chemical engineering
1.5. Study cycle	Master Degree
1.6. Study program	Chemical Engineering for Refineries and Petrochemistry

2. Course information

2.1. Course title Tec	Technologies for alternative fuels manufacturing				
2.2. Course coordinator		Ass	ist prof. Matei Danuta		
2.3. Laboratory / seminar coordinator		Assist prof. Matei Danuta			
2.4. Project coordinator		-			
2.5. Year of study		1			
2.6. Semester *		1			
2.7. Evaluation type		Exa	IM		
2.8. Course type - formative category *	** DS		2.8. Type of subject matter ***		0

* the semester number is in accordance with the curriculum;

** fundamental = DF; domain = DD; speciality = DS; complementary = DC; thoroughgoing = DA; synthesis = DSI.

*** compulsory = C; optional = O; elective = E

3. Total estimated time (teaching hours per semester)

6

	•	• •		•			
3.1. Number of hours per week	4	of which: 3.2.course	2	3.3. Seminars/laboratories	2	3.4 Project	-
3.4. Total hours from curriculum	56	of which: 3.5.course	28	3.6. Seminars/laboratories	28	3.8 Project	-
3.9. Time distribution							hours
Study of textbook, course sup	port	, bibliography and r	notes				40
Further reading in the library,	on c	online platforms and	l field	work			-
Preparing seminars / laboratories, homework, portfolios and essays						50	
Tutoring						-	
Examinations					4		
Other activities							
3.10. Total hours of individual stu	ıdy	94					•
3.11. Total hours per semester		150					

3.12. Number of credits

4. Prerequisites (where applicable)

1.1 of our minutum	Thermo catalytic Processes
4.1. of curriculum	Organic chemistry, Petrochemistry, Environmental Protection
4.2 of skills	\triangleright
4.2. of skills	\blacktriangleright

5. Requirements (where applicable)

5.1. of course	Course room equipped with video projector and screen
5.2. of seminars/laboratory	Laboratory equipped specific with related infrastructure

6. Specific competences

Professional competences	 PC1. Defines the process and designs technical components, including description, analysis, and advanced application of fundamental concepts and theories in the field of chemical engineering. PC2. Analysis of experimental data: determination of physico-chemical characteristics, structure and properties of petroleum products using complex analysis methods. PC3. Designs equipment and equipment for utilities: design of appliances, processes and installations with the application of knowledge in the field of chemical engineering. PC4. Analyzes production processes for improvement: real-time management of processes and installations in the chemical industry.
Cross-curricular competences	 CC1. Ability to provide information and documentation in its field of activity, but also in related fields, in a language of international circulation. CC2. Efficient and effective performance of individual professional activities, under conditions of autonomy and professional independence. CC3. Ability to perform professional tasks as a team leader.

7. Course objectives (based on the competence grid)

7.1. General objective	The course aims to familiarize students with innovative processes of alternative fuels production
7.2. Specific objectives	 Knowledge and identification of physico-chemical characteristics, specific combustion properties and unconventional fuels production processes Ability to compare manufacturing technologies and the life cycle of non-conventional fuels with conventional fuels Performance evaluation and identification of limitations due to the replacement or addition of such components in the MAS and MAC engines

8. Contents

8.1. Course	Time	Teaching methods	Comments
8.1.1. General aspects regarding the		problem-solving,	
involvement of car transport in		documenting on the web,	
environmental pollution. Current		exemplification	
environmental protection legislation.	4		
8.1.2. Alternative fuels: green and blue			
hydrogen, oxygenated organic		problem-solving,	
compounds (alcohols and ethers),		documenting on the web,	
biofuels: bioethanol, vegetable oils,	8	exemplification	

vegetable and animal oils, biodiesel,			
biokerosene. Physical-chemical			
properties.			
8.1.3. Alternative fuel production			
technologies: LPG, CNG, GTL; green			
and blue hydrogen production;			
Technologies for the manufacture of	8		
oxygenated organic compounds;			
Biofuels manufacturing technologies		problem-solving,	
8.1.4. Fuel storage and feeding systems		documenting on the web,	
	4	exemplification	
8.1.5. Pollutant emissions of cars			
powered by alternative fuels	2		
8.1.6. Economic considerations			
regarding the use of unconventional	2		
fuels			
Bibliography			
1. Knothe, G., Gerpen, J. V., Krahl, J., Th	e biodiesel h	andbook, AOCS Press, 2005.	
2. Speight, J. G., The refinery of the future	e, Elsevier S	cience, Norwich, N.Y., Oxford, 2011.	
3. Singh, A., Rathore, D., Biohydroge	n productio	n: sustainability of current technolog	gy and future
perspective, Springer (India), 2017.			
4. Twidell, J., Weir, T., Renewable energy			
5. Hubca, Gh., Lupu, A., Cociaşu, C.A.	, Biocombus	stibili, Biodiesel Bioetanol Sun diesel,	Editura Matrix
Rom, Bucuresti, 2008. 6. *** Directive 2009/30/EC of the Europe	on Darliamo	at and of the Council of 23 April 2000	
7. Lee. S., Speight, J.G., Loyalka, S.K., H			s 2007
8.2. Seminar / laboratory	Time	Teaching methods	Comments
8.2.1. Synthesis of biodiesel,		Consultation of literature and	
characterization of the raw materials		industry data, identification and use	
used	4	of standardized analysis methods	
		,	
8.2.2 Develop optimal recipes for	4	Laboratory methods	
biodiesel synthesis		,	
8.2.3. Complex analytical techniques for		Identifying and using standardized	
characterization of biodiesel	6	methods, discussion and	
	_	interpretation of the results	
8.2.4. Develop optimal synthesis of	10		
hydrogen thought steam reforming of			
bioethanol over different types of		Identifying and using standardized	
catalyst		methods, discussion and	
	1		
8.2.5. Establishing experimental graphs		interpretation of the results	
8.2.5. Establishing experimental graphs correlations between different	4	interpretation of the results	
correlations between different	4	interpretation of the results	
correlations between different	4	interpretation of the results	
correlations between different parameters of the process	4	interpretation of the results	

selectivity			
Bibliography			
1. European Standards and Norms: EN	228, EN 590, EN	589; EN 14214; EN 15376.	
8.3. Project	Time	Teaching methods	Comments
Bibliography			

9. Correlation of the course contents with the demands of the epistemic community representatives, professional associations and representative employers in the field of the program

The course syllabus was developed in cooperation with representatives of engineering companies in Ploiești and Bucharest that have hired graduates of similar master programs.

10. Evaluation

Activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percentage		
10.4. Course	The evaluation takes into account the following categories knowledge: Theoretical knowledge evaluated by questions related to topics presented in the course	Written paper	of final grade		
	Theoretical and applied knowledge evaluated through the final examination	Written paper	60%		
10.5. Seminar / laboratory	General and detailed knowledge assessed by questions related to the topic and working conditions of the laboratory work	Assessment of laboratory activity; Drawing up the reports and interpreting the results of the experimental part	20%		
10.6 Project	-	-	-		
10.6. Minimum performance standard					
Written examination:					

For grade 5 it is necessary to obtain a minimum score of 50% for the theoretical knowledge, as well as to prove a minimum level of understanding and solving the applications in the subject (50% minimum)

 For grade 10 it is necessary to obtain a maximum score for theoretical knowledge and a complete and correct solving of the exam subjects (minimum 95%).
 Laboratory activity:

> Note 5 requires a minimum level of 50% for general knowledge as well as a minimum level of

understanding and use of laboratory-specific knowledge. Note 10 requires a minimum of 90% for laboratory-specific knowledge.

Signature/date 05.02.2025

Course coordinator

Seminar/laboratory coordinator

Project coordinator

Date of approval in the department 20.03.2025

Head of department Associate prof.PhD. Eng. Neagu Mihaela

NA

Dean Assist. PhD.Eng. Duşescu Vasile Cristina

Alta.